Linear Independence of Translates of a Box Spline

Rong-qing Jia
Mathematics Department, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.

Communicated by Charles A. Micchelli
Received October 28, 1982

A box spline M_{Ξ} is a distribution on \mathbb{R}^{n} given by the rule

$$
M_{\Xi}=\phi \mapsto \int_{[0,1]^{n}} \phi\left(\sum_{i=1}^{n} \lambda(i) \xi_{i}\right) d \lambda
$$

for some sequence $\Xi:=\left(\xi_{i}\right)_{1}^{n}$ (see [1]). We think of Ξ as a set of cardinality $|\Xi|=n$. For a subset V of R^{m}, we are interested in linear independence of the translates $M_{\bar{\Xi}, v}:=M_{\bar{\Sigma}}(\cdot-v), v \in V$. By linear independence of $\left(M_{\bar{\Xi}, u}\right)_{V}$ we mean that the linear map

$$
a \mapsto \sum_{v} a(v) M_{\Xi, x}
$$

is one-to-one on \mathbb{R}^{V} (see [1]). For the special case $\Xi \subseteq V=\mathbb{Z}^{m}$, de Boor and Höllig show that ($\left.M_{\bar{E}, v}\right)_{v \in V}$ is linearly dependent unless

$$
|\operatorname{det} Z|=1 \quad \text { for all bases } Z \subseteq \Xi
$$

(see Proposition 4 of $|1|$). In this note we shall prove that the converse of the above statement is also true. Thus we have the following

Theorem. Suppose that $\Xi \subseteq V=\mathbb{Z}^{m}$, and that $\langle\Xi\rangle$, the affine hull of Ξ, is the whole of \mathbb{R}^{m}. Then $\left(M_{\Xi, v}\right)_{V}$ is linearly independent if and only if

$$
|\operatorname{det} Z|=1 \quad \text { for all bases } Z \subseteq \Xi \text {. }
$$

Proof. We only need to prove the "if" part.
The proof proceeds by induction on $|\Xi|$. The case $|\Xi|=1$ is trivial. Suppose now that the theorem has been proved for any Ξ^{\prime} with $\left|\Xi^{\prime}\right|<|\Xi|$.

Without loss of generality, we may assume Ξ contains all the unit vectors, i.e.,

$$
\left\{e_{1}, \ldots, e_{m}\right\} \subset \Xi .
$$

158

Indeed, Ξ contains some basis $Z=\left\{\zeta_{1}, \ldots ., \zeta_{m}\right\}$ for \mathbb{R}^{m}, and, by assumption, $|\operatorname{det} Z|=1$. Let Q be the linear map which carries ζ_{i} to $e_{i}(i=1, \ldots, m)$. Since $|\operatorname{det} Z|=1, Q$ must map V to V. Moreover, $|\operatorname{det} Q|=1$. Hence $Q E \subseteq V$ and (cf. [1])

$$
M_{\Xi}=|\operatorname{det} Q| M_{Q \equiv} \circ Q=M_{Q \Xi} \circ Q .
$$

It follows that $\left(M_{\Xi, v}\right)_{V}$ is linearly independent if $\left(M_{Q \Xi, v}\right)_{V}$ is. Thus, if necessary, we can work with $M_{Q \equiv}$ instead of M_{Ξ}.

In the following we divide our consideration into two cases.
Case 1. There exists some e_{k} such that $\left\langle e_{k}\right\rangle \cap\left\langle\Xi \backslash e_{k}\right\rangle=0$.
Without loss we may assume $\left\langle e_{m}\right\rangle \cap\left\langle\Xi \backslash e_{m}\right\rangle=0$. Then $\left\langle\Xi \backslash e_{m}\right\rangle=\mathbb{R}^{m-1}$. Any $v \in V$ can be uniquely written as

$$
v=j e_{m}+v^{\prime} \quad \text { with } \quad j \in Z \text { and } v^{\prime} \in \mathbb{Z}^{m-1} .
$$

It is easily seen that

$$
M_{\Xi}(x)=M_{e_{m}}\left(x_{m}\right) M_{\Xi \backslash e_{m}}\left(x^{\prime}\right)
$$

where $x=\left(x_{1}, \ldots, x_{m-1}, x_{m}\right)$ and $x^{\prime}=\left(x_{1}, \ldots, x_{m-1}\right)$. Suppose now that $\sum_{v \in V} a(v) M_{\Xi}(\cdot-v)=0$ for some $a \in \mathbb{R}^{V}$. Then

$$
\begin{align*}
& \sum_{j \in \mathbb{Z}} \sum_{v^{\prime} \in \mathbb{Z}^{m-1}} a\left(j e_{m}+v^{\prime}\right) M_{e_{m}}\left(x_{m}-j e_{m}\right) M_{\Xi \backslash e_{m}}\left(x^{\prime}-v^{\prime}\right)=0 \\
& \quad \text { for any } x_{m} \in \mathbb{R} \text { and } x^{\prime} \in \mathbb{R}^{m-1} . \tag{1}
\end{align*}
$$

Set $x_{m}=\left(i+\frac{1}{2}\right) e_{m}$ in (1). We obtain

$$
\sum_{v^{\prime} \in \mathbb{Z}^{m-1}} a\left(i e_{m}+v^{\prime}\right) M_{\Xi \backslash \ell_{m}}\left(x^{\prime}-v^{\prime}\right)=0 \quad \text { for any } \quad x^{\prime} \in \mathbb{R}^{m-1} \text { and } i \in \mathbb{Z}
$$

By induction hypothesis, $\left(M_{\Xi \backslash e_{m}, v^{\prime}}\right)_{v^{\prime} \in \mathbb{Z}^{m-1}}$ is linearly independent. Therefore

$$
a\left(i e_{m}+v^{\prime}\right)=0 \quad \text { for all } \quad v^{\prime} \in \mathbb{Z}^{m-1} \text { and } i \in \mathbb{Z}
$$

That is, $a=0$. This proves the linear independence of $\left(M_{\Xi, v}\right)_{V}$ in Case 1.
Case 2. The complement of case 1 ; i.e., $\left\langle\Xi \backslash e_{k}\right\rangle=\mathbb{R}^{m}$ for every $k=1, \ldots, m$.

Suppose that $\sum_{v \in V} a(v) M_{\Xi, v}=0$ for some $a \in \mathbb{R}^{V}$. Then

$$
\begin{aligned}
& \searrow\left(\nabla_{e_{k}} a\right)(v) M_{\Xi \backslash e_{k}}(\cdot-v) \\
& \quad=D_{e_{k}}\left(\sum a(v) M_{\Xi}(\cdot-v)\right)=0 \quad \text { for } \quad k=1, \ldots, m
\end{aligned}
$$

(see [1]). By induction hypothesis, $\left(M_{\Xi \backslash e_{m}, v}\right)_{V}$ is linearly independent. Hence

$$
\nabla_{e_{k}} a=0 \quad \text { for each } \quad k=1, \ldots, m
$$

It follows that

$$
a(v)=a\left(v-e_{k}\right) \quad \text { for } \quad k=1, \ldots, m
$$

Therefore

$$
a(v)=a(0) \quad \text { for all } \quad v \in V
$$

Finally,

$$
a(0)=a(0) \sum_{v \in V} M_{\Xi, v}=\sum_{v \in V} a(v) M_{\Xi, v}=0
$$

This shows that $\left(M_{\Xi, v}\right)_{V}$ is linearly independent. Our proof is complete.
Postscript. After this work was done, I was made aware that W. Dahmen and C. A. Micchelli also prove this theorem, in the paper "Translates of Multivariate Splines," which will appear in Linear Algebra and Its Applications. However, the proof given here is particularly simple and elementary.

Reference

1. C. de Boor and K. Höllig, " B-splines from Parallelepipeds," Mathematics Research Center Technical Summary Report No. 2320, University of Wisconsin-Madison.
